Problem set 1
Exercise 5:
(a) A curve with non-vanishing k is helix iff 1/k is
Constant $\Rightarrow \alpha$ is helix, $\exists u$ s.t $\langle T, u \rangle = Constant (*)$ (call it Coso)
$0 = \langle \tau, n \rangle' = \langle \tau', u \rangle$
$\epsilon < \kappa N$, $u >$
$= k \langle N, u \rangle = 0$
Since $k \neq 0$ < N, n > = 0
$v = \langle N, u \rangle' = \langle N', u \rangle = \langle -kT + iB, u \rangle$
$ \Rightarrow If u = \lambda(a T + b N + c B) $ $ + hun b = 0 $ $ f a = T, C = k $
$u = \lambda(\tau T + kB)$
from * e the fact a has unit norm
gives u= Cos o T + Sin o B
$i = \frac{1}{\lambda t} = \frac{1}{2} = \frac{1}{2} $

· · · ·	Ę		s Grintan	· · · · · · • · · · · ·	· · · · · ·	· · · · · ·	· ·
		take u =	Coso T +	rino B			
· · · ·	· · · ·	vinen	6 = 6t ⁻¹		this is number	a fixed by assump	hion
· · ·	· · ·	u'= Coso -	r' + Sino (B ^r	· · · · · ·	· · · · · ·	· ·
• • •		= . K C	080 N +	sin0 -t		· · · · · ·	· ·
• • •			K COSO - 7 S		· · = 0 ·		
· · · ·	· · · ·			$\frac{T}{\sqrt{k^2+T^2}}$	& \$ino =	$\frac{k}{\sqrt{k^2+\tilde{\iota}^2}}$	· · ·
(6)	A C	unve is c	irele helix	iff t	= Grustont	· ·
· · ·	K =	Gastort >0		· · · · · ·	· · · · · ·	· · · · · ·	• •
	If	of = (rcost	, rsiot , ht) the	n Simp		
· · · ·	Comp	, utations	Show	$K = \frac{r}{r^2 + r^2}$		$= \frac{h}{h^2 + r^2}$	· · · ·
· · ·	The	Gover se	follows	from	uni qu	nens pant	· ·
· · ·	of	fun damen ti	I theorem	of	kpau ci	lyves	· ·
· · ·		Sorry I	don't kno	w. He	German	name ⁴ /	· · ·
· · · ·	· · ·	· · · · · · · · ·	· · · · · ·	· · · · · ·	· · · · · ·	· · · · · ·	· · ·
							• •

(c)	d lies	On a sphere if $P^2 + (P^2)^2 = Constan +$
· · · ·	f = y _k	$, \sigma := \frac{1}{T}$
· · ·	defin	$M = d + P N(s) + P' \sigma B(s)$
· · ·	· · · · · · · · · · · · · · · · · · ·	n' = T + e' N(s) + P N'(s) + e'' - B(s)
· · ·	 	+ $P'\sigma' B(s) + P'\sigma B'(s)$
· · ·	· · · · · · ·	z T + P' N(s) + P(-KT + TB) + P'' - B(s)
· · ·	· · · · · · ·	$+ P'\sigma' B(s) + P'\sigma(-\tau N)$
· · ·	· · · · · · ·	$z \left(1 - \frac{9}{K}\right)T + \left(\frac{9}{-} - \frac{9}{\sigma}\right)N$
Reca f		+ $(P\overline{L} + P''\sigma + P'\sigma')B$ = $\sigma T + \sigma N + (PT + P'\sigma')B$
· · ·	Enough	to show $\frac{P}{\sigma} + \frac{P}{\sigma} + \frac{P}{\sigma} = 0$
· · · ·	we have	$P^{2} + (P'\sigma)^{2} = Costant$, taking derivative
	gives	$2 \mathbf{P} \mathbf{P}' + 2(\mathbf{P} \boldsymbol{\sigma}) (\mathbf{P}' \boldsymbol{\sigma} + \mathbf{P}' \boldsymbol{\sigma}') = 0$
· · ·	· · · · · · ·	$2 \mathbf{P} \sigma \left(\frac{\mathbf{P}}{\sigma} + \mathbf{P}' \sigma + \mathbf{P}' \sigma' \right) = \mathbf{D}$
· · · ·	· · · · · · · ·	$ \begin{array}{ccc} \sigma \neq 0 \\ e^{\prime} \neq 0 \end{array} = \left(\begin{array}{c} -P \\ \overline{\sigma} \\ \overline{\sigma} \end{array} + \begin{array}{c} P^{\prime} \\ \overline{\sigma} \end{array} + \begin{array}{c} P^{\prime} \\ \overline{\sigma} \end{array} \right) = 0 \end{array} $

Metric on a Surface

it (57	each	tang	lent	Spau	· · ·	T _p s	f•		pes	· · ·
но <u>З</u>			· · · ·		· · ·	met	י י אינ י		· ·	• •	
	naru 	raily	, Crái		lin ^a . P	e IR	3		• •	• •	
Cind	p (K ⁻	≌ (K • • Th	tor	spa ce	WE	, h	a vr	8-	tan d	an d	• •
 		pro d	uct.	• •				• •		• •	
 	S		 3 	mbec	ded	, H	nen "	the			· ·
etn'e	i în	duct	d		S S S	• •	· ·	· ·	• •	· ·	· ·
Gure		pe S	, , , , , , =) ,	pe		an	d	• •		• •	
	•••	• •	· · · ·	r _p S	<u>C</u> T	P		• •	• •	•••	• •
· · ·		get	Tp S	a NS	u ally	?		• •		• •	
ն	all	y (noun	ď	P;	S ·		be	gìv		
Zen	 .o - Je	et o	So	me .	fun ch	07	¦€ :	U	• •) /	R .
with .	pe 1	 .	• • •					1R ³		• •	
Jow	1	Tp S	is .	sì	mply	k	 UA . 	dfp	• •	· ·	· ·
· · ·		Ţ.	(_f)	 	())	· ·	st	<u>J</u> t		• •	• •
	t K ³ T Cand in in thic Caire Nith Jow	t on IR ³ natu Tp IR ³ and or innea innea S thic in Guiven Vocall Zero - Su Nith Pe 7 Jo W 7	If on Each IR^3 naturally $T_P IR^3 \simeq IR^3$ and on Th inner prod time prod finduce Gairen pe S w to get Iocally Zero-Set of with pe 21 Jow Tp S	It on each tang IR^3 naturally add $T_P IR^3 \simeq IR^3$ for and on This inner product inner product of Given pe S => w to get T_PS Iocally assun $Zero - Set of So Nith Pe U Jow T_PS is$	It on each tangent IR^3 naturally admite $T_P IR^3 \simeq IR^3$ for each and on This Space inner product inner product inner pe S => PE T_PS w to get T_PS we locally around zero-set of some with pe U Jow T_PS is sin	It on each tangent space IR^3 naturally admits a $T_P IR^3 \simeq IR^3$ for each P and on This Space we inner product inner product inner pes => pe IR ³ $T_P S \subseteq T$ w to get $T_P S$ usually Io cally assund P, Zero - Set of Some functions Nith peral	It on each tangent space IR^3 naturally admits a meth $T_P IR^3 \simeq IR^3$ for each $P \in IR^3$ and on This space we have inner product ien $S \subseteq IR^3$ embedded, the itric induced on S Guiven $P \in S \Rightarrow P \in IR^3$ an $T_P S \subseteq T_P IR^3$ w to get $T_P S$ usually? Totally assumed P , S Zero-Set of Some function with $P \in U$ Jow $T_P S$ is simply k	It on each tangent space 1ps IR^3 naturally admits a metric $T_P IR^3 \simeq IR^3$ for each $P \in IR^3$ and on This space we have inner product inner product ILR^3 embedded, then ILR^3 in duced on S Given $P \in S \Rightarrow P \in IR^3$ and $T_P S \subseteq T_P IR^3$ who get $T_P S$ usually? Iscally assund P, S can Zero-Set of Some function for which $P \in U$ ISCALLY is simply ken	It on each tangent space 1ps to IR^3 naturally admits a metric $T_P IR^3 \simeq IR^3$ for each $P \in IR^3$ and on This space we have inner product IR^3 embedded, then the inner product IR^3 embedded, then the inner pes => $P \in IR^3$ and $T_P S \subseteq T_P IR^3$ w to get $T_P S$ usually? ID Cally around P, S can be ID Cally around P, S can be IR^3 with $P \in U$ IR^3 IR^3 $IO W = T_P S$ is simply ker df_P	t on each tangent space 1ps tor IR^3 naturally admits a metric $Tp IR^3 \simeq IR^3$ for each $P \in IR^3$ and on This Space we have stand inner product $IR S \subseteq IR^3$ embedded, then there inner product $IR S \subseteq IR^3$ embedded, then there inner pes => $P \in IR^3$ and $T_P S \subseteq T_P IR^3$ w to get $T_P S$ usually? Iocally around P , S can be giv Iocally around P , S can be giv Iocally around P , S can be giv Iocally around P , R can be giv IR^3 Now $T_P S$ is simply ken df_P .	t on each tangent space 1ps for pro R^3 naturally admits a metric $T_P R^3 \simeq R^3$ for each $P \in R^3$ and on This space we have standard inner product $R \subseteq R^3$ embedded, then there is the in duced on S Given $p \in S \Longrightarrow P \in R^3$ and $T_P S \subseteq T_P R^3$ w to get $T_P S$ usually? Rocally assund P, S can be given Zero-Set of Some function $f \colon U \longrightarrow R^3$ Noith $P \in U$ $I \otimes S \cong S \cong S \cap P \log R^3$

This	inclusion		ector,	spauo	· · · · ·	· · · · · · · ·
· · · · · · · · ·	Tps C T		induced on 2-	a dim	innen Vector	product Space Tps
Ĵf.	α α α α α α α α α α α α α α	pan a me	tn'z ah		a a s	· · · · · · · · ·
	$(u,v) \vdash$	U C S open	C 123 (x'(n	, , , , , , , , , , , , , , , , , , ,	n ² (u, v)	$n^{3}(u,v)$
This		vome o m	orphis m		, bijec	tre Gatinus us
map S S Hhe	with Cont has a Subspace	inu ouo topolog topolog	inver m ind alogy	he ce d	on ît	which b
· · · · · · · · · · · · · · · · · · ·	induco		ана ана арана а а а	Jn -	T _P R ² -	-> T _{r(p)} S
· · · · · · · · · · · ·	16 Map 10 x ao a r x: 18 ²	the nap inti > U	Jacob DIR ³ Es -	ian M 	ep 0.4 R ³	ain, viewing
π.	us J _r		$=\left(\frac{3}{9}\right)$	ι' (π,ν) π) Ju Ju	(u,v) , $\frac{\partial x^3}{\partial u}(u,v)$
· · · · · · · ·	and binni	larly	· · ·	· · ·	· · · · ·	· · · · · · · ·
· · · · · · · ·	· · · · · · ·	· · · · ·	· · ·	· · ·	· · · · ·	· · · · · · · · ·

$\mathbf{J}_{\mathbf{y}}\begin{pmatrix}0\\\mathbf{i}\end{pmatrix} = \begin{pmatrix} \frac{\partial \mathbf{n}^{1}}{(\mathbf{u},\mathbf{v})}, \frac{\partial \mathbf{n}^{2}}{\partial \mathbf{v}}(\mathbf{u},\mathbf{v}), \frac{\partial \mathbf{n}^{3}}{\partial \mathbf{v}}(\mathbf{u},\mathbf{v}) \\ \frac{\partial \mathbf{v}}{\partial \mathbf{v}} & \frac{\partial \mathbf{v}}{\partial \mathbf{v}} \end{pmatrix}$
The elements $J_n(i) & J_n(i)$ form a basis tangent space at every point in image of
the map x. T this basis the inner product on the
In This busic metric) is given by tanyent spaces (metric) is given by
$9 = \left(\langle w_2, w_1 \rangle \langle w_2, w_2 \rangle \right)$
one we have g, the inner product of given by
$\begin{pmatrix} \mathbf{U}_{1} & \mathbf{U}_{2} \\ \mathbf{U}_{1} & \mathbf{U}_{2} \end{pmatrix} \begin{pmatrix} \mathbf{g} \\ \mathbf{g} \\ \mathbf{g} \end{pmatrix} = \begin{pmatrix} \mathbf{u}_{1} \\ \mathbf{v}_{1} \\ \mathbf{v}_{2} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{1} \\ \mathbf{v}_{2} \end{pmatrix}$
where v_1 , v_2 are the Components of $v \in T_pS$ in the basin w_1 , w_2

Problem Set 2 1. Stereographie projections $S^{2} = \{(x, y, z) \in \mathbb{R}^{3} \mid x^{2} + y^{2} + z^{2} = \sqrt{3}\}$ (a) (0,0,1) x IR -> IR is a parametrization (6) $\pi(u,v) = \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}\right)$ t(u, v, o) + (1-t)(o, o, 1) line 'joi'n'y (u, v, o) = (0, o, 1)(tu, tv, (1-t)) $t^2 x^2 + t^2 y^2 + (1-t)^2 = 1$ find t such that $u^2 + v^2 + \left(\frac{1}{t} - 1\right)^2 = \frac{1}{t^2}$ $u^{2}+v^{2}+ \perp -\frac{2}{t}+1 = \frac{1}{t^{2}}$ $u^{2}+v^{2}-\frac{2}{t}+1 = 0$ t

$\mathcal{U}^{2} + \sqrt{\frac{2}{t}} = \frac{2}{t}$
$f = u^{2} + v^{2} + 1$
$ = \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, \frac{u^2 + v^2 - 2}{u^2 + v^2 + 1} \right) $ is the unique point on s^2 intersecting this line (o, 6, 1) (obviously other than (o, 6, 1))
$(c) y: k \longrightarrow k^{3}$ $y(\bar{u}, \bar{v}) = \left(\frac{2\bar{u}}{\bar{u}^{2}+\bar{v}^{2}+1}, \frac{2\bar{v}}{\bar{u}^{2}+\bar{v}^{2}+1}, \frac{1-\bar{u}^{2}+\bar{v}^{2}}{\bar{u}^{2}+\bar{v}^{2}+1}\right)$
what is $\overline{x} \circ \underline{y} : R^2 \longrightarrow R^2$ for this we will show $\overline{x}'(a,b,c) = \left(\frac{\underline{x}}{1-\overline{c}}, \frac{\underline{y}}{1-\overline{c}}\right)$
Verity its the ri! now compute roy & show its smooth
$\mathbf{x}^{-1} \circ \mathbf{y} (\mathbf{x}, \mathbf{v}) = \left(\underbrace{\mathbf{w}}_{\mathbf{x}^{-1} + \mathbf{v}^{-1}}, \underbrace{\mathbf{w}}_{\mathbf{x}^{-1} + \mathbf{v}^{-1}} \right)$
(d) Thus by definition of therfaces, S ² is a travely surface.

 $\mathbf{n}(\mathbf{n},\mathbf{v}) = \left(\frac{2 \mathcal{U}}{\mathcal{N}^{2} + \mathcal{V}^{2} + 1}, \frac{2 \mathcal{V}}{\mathcal{U}^{2} + \mathcal{V}^{2} + 1}, \frac{2 \mathcal{V}}{\mathcal{U}^{2} + \mathcal{V}^{2} + 1}, \frac{2 \mathcal{U}}{\mathcal{U}^{2} + \mathcal{V}^{2} + 1}\right)$ (**e**) $\mathcal{R}_{u}(u,v) = \left(\frac{2v^{2} - 2u^{2} + 2}{(u^{2} + v^{2} + 1)^{2}}, \frac{-4uv}{(u^{2} + v^{2} + 1)^{2}}, \frac{4u}{(u^{2} + v^{2} + 1)^{2}} \right)$ $\chi_{v}(u,v) = \left(\frac{-4uv}{(u^{2}+v^{2}+1)^{2}}, \frac{2u^{2}-2v^{2}+2}{(u^{2}+v^{2}+1)^{2}}, \frac{4v}{(u^{2}+v^{2}+1)^{2}}\right)$ $g_{21}(u,v) = g_{12}(u,v) = 0$

· · · ·	$\alpha(+) = (r(+), z(+)) + e(a, b) r(+)>0$
· · ·	This is rotated about z-axis, this gives us
	a surface called rotation surface S.
· · ·	now we have a parametrization for S
· · ·	$n(t, q) = (r(t) \cos q, r(t) \sin q, z(t))$
· · ·	t un res one Called men Lian.
· · ·	q curves are called latin des
(h)	if a is regular and injective, then n is
	a para metriz alion.
· · ·	Injectivity of a cleady gives injectivity of
· · ·	the parametrization $x : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$
	· · · · · · · · · · · · · · · · · · ·
· · ·	$x_{+}(+, q) = (v(+) \cos q, v(+) \sin q, \tilde{v}(+))$
· · ·	$1_{q}(t, q) = (-r(t) \sin q, r(t) \cos q, o)$
· · · ·	$n(t, q) = n_t(t, q) \times n_q(t, q)$ = $(r(t) \hat{z}(t) \cos q, -r(t) \hat{z}(t) \sin q, \dot{r}(t))$
· · ·	$(n(t_1,q))^2 = v^2(t) (\dot{z}^2(t) + \dot{v}^2(t)) > 0$

(° C)	metric in rotation Surfaces
· · · · ·	$n(t,q) = (r(t)\cos q, r(t)\sin q, t(t))$
· · · · ·	$N_{s}(t, \phi) = (\dot{v}(t) \cos \phi , \dot{v}(t) \sin \phi , \dot{z}(t))$
· · · · ·	$X_q(t,q) = (-rLt) \sinh q$, $r(t) \cos q$, 0)
· · · · ·	$g_{11} = \dot{\gamma}(t)^2 + \dot{z}(t)^2$
· · · · ·	$g_{12} = 0$ $(\dot{\gamma}(+)^2 + \hat{z}(+)^2 = 0)$
· · · · ·	$9_{2t} = 0$ $y = $ 0 $y(t)^2$
· · · · ·	
· · · · · 3 .	$\pi(r, q) = (r\cos q, r\sin q, r)$
 	$\Upsilon \in \mathbb{R}^{+}$
· · · · ·	from previous problem we have 'r' instead
 	So $g = \begin{pmatrix} 2 & 0 \\ 0 & 1^{\circ} \end{pmatrix}$ (notive there is a problem at $r = 0$
· · · · · ·	$r(t) = e^{\frac{t}{2}}, q(t) = \frac{t}{\sqrt{2}}$ this gives $e^{\frac{t}{\sqrt{2}}}$ this gives $e^{\frac{t}{\sqrt{2}}}$ the (S, g)
	in a like a 2 - 2 - 2

what is length ? $L(\alpha) = \int [d(t)] dt$ = J J gij d' d' dt $= \int_{0}^{\pi} \int 2(\dot{a}')^{2} + v^{2}(\dot{a}')^{2} dt$ $\int_{0}^{1} \sqrt{2\left(\frac{C+\theta}{2} - e^{x}p\left(\frac{t \cosh\theta}{2}\right)^{2} + e^{x}p\left(\frac{t \cosh\theta}{2}\right) \cdot \frac{1}{2} dt}$ $\int \frac{(ot^2 + i)}{2} \int \frac{\pi}{\sqrt{\exp(t(oto))}} dt$ $\frac{1}{\sqrt{2}} \frac{2}{\sin 6} \frac{\exp (-\frac{1}{2} \cos 6)}{2}$ $= \frac{\int_2}{\ln \theta \quad \text{cot} \theta} \left(\frac{\exp \pi \cos \theta}{2} - 1 \right)$ sind corro angle d and q = constant cuave. what is the vishat is q = constant cun ve a vector in that direction would be $w = \left(\begin{array}{c} \cos \frac{t}{r} & \sin \frac{t}{r} \\ \sqrt{2} & \sqrt{2} \end{array}\right)$ at time $\frac{t}{\sqrt{2}}$

 $\langle \alpha', w \rangle$ $\langle \alpha', w \rangle$ claim is (b) () for all + & P. $\alpha' = \left(\begin{array}{c} e^{\pm i \omega t 0} \\ 2 \end{array} \right) \left(\begin{array}{c} \omega b \pm 1 \\ 2 \end{array} \right) \left(\begin{array}{c}$ $e^{t} \omega t o = cot o = sin t + e^{t} t \omega t o$ $\frac{1}{2} \sqrt{12} \sqrt{12} \sqrt{12} \sqrt{12} \sqrt{12}$ $e^{t \cot 0}$ $(o^{\dagger 0})$ 2 e 2 coto (d) [W] $\sqrt{2(\omega + \theta)} \exp((\pm \omega + \theta))^2 + \exp(\pm \omega + \theta) \frac{1}{2} \sqrt{2}$ Lot 0 exp(toto) ((0+20+1) exp(+ 10to) fino coto = Losó

 			· · · · · · · · · · · · · · · · · · ·		5
· · · ·	· · · · · · ·	d FG	FB		· · · · · · ·
· · · ·	Thue	G change	s 0,3	FGF	· · · · · · ·
 	ι 	- FGF	· · · · · ·	· · · · · · · · · · ·	
· · · ·	&	v = Fau	· · · · · ·		
· · · ·	 	 	· · · · · · · · · ·	· · · · · · ·
· · · ·	· · · · · · ·		· · · · · ·	· · · · · · · · · · ·	
· · · ·	· · · · · ·	· · · · · · · · · · ·	· · · · · · ·
· · · ·	 	· · · · · · · · ·	· · · · · ·	· · · · · · · · · · ·	· · · · · · ·