Problem set 1
Exercise 5 :
(a) A curve with non-vanishing k is helix of τ / k is Constant
$\Rightarrow \alpha$ is helix, 7 set $\langle T, u\rangle=\operatorname{Constant}$ (*) (call it $\cos \theta$)

$$
\begin{aligned}
0=\langle T, n\rangle^{\prime} & =\left\langle T^{\prime}, u\right\rangle \\
& =\langle k N, u\rangle \\
& =k\langle N, u\rangle=0
\end{aligned}
$$

Since $k \neq 0$

$$
\begin{aligned}
&\langle N, u\rangle=0 \\
& 0\langle N, u\rangle^{\prime}=\left\langle N^{\prime}, u\right\rangle=\langle-k T+i B, u\rangle \\
& \Rightarrow \text { If } u=\lambda(a T+b N+c B) \quad \lambda \in \mathbb{R} \backslash\{0\} \\
& \text { then } b=0
\end{aligned}
$$

$$
f \quad a=\tau, c=k
$$

$$
u=\lambda(\tau T+k B)
$$

from $*$ \& the fact u has unit norm
gives $u=\cos \theta T+\sin \theta B$

$$
\Rightarrow \frac{d \tau}{\partial k}=\frac{\tau}{k}=\frac{\cos \theta}{\sin \theta}=\text { Constant }
$$

\Leftarrow if $\frac{\tau}{k}$ is Constant
take $u=\cos \theta T+\sin \theta \beta$
where $\theta=\cot ^{-1}\left(\frac{t}{k}\right) \quad$ This is a fixed number by assumption

$$
\begin{aligned}
u^{\prime} & =\cos \theta T^{\prime}+\sin \theta B^{\prime} \\
& =k \cos \theta N+\sin \theta-\tau N \\
& =(k \cos \theta-\tau \sin \theta) N=0
\end{aligned}
$$

becauk $\quad \cos \theta=\frac{\tau}{\sqrt{k^{2}+\tau^{2}}} \& \sin \theta=\frac{k}{\sqrt{k^{2}+\tau^{2}}}$
(b) A curve is circle helix iff $\tau=$ Constant \& $k=$ Constant >0

If $\alpha=(r \cos t, r \sin t, h t)$ then simple
Computations show $k=\frac{r}{r^{2}+h^{2}}, \tau=\frac{h}{h^{2}+r^{2}}$

The Converse follows from uniqueness part of fundamental theorem of space curves.
"Sorry I don't know the German name"
(c) α lies on a sphere if $p^{2}+\left(\rho_{0}\right)^{2}=$ constant

$$
f=y_{k}, \quad \sigma=\frac{1}{\tau}
$$

define $m=\alpha+p N(s)+e^{\prime} \sigma B(s)$

$$
\begin{aligned}
m^{\prime}= & T+\rho^{\prime} N(s)+\rho N^{\prime}(s)+\rho_{\sigma}^{\prime \prime} \beta(s) \\
& +\rho^{\prime} \beta^{\prime}(s)+\rho_{\sigma}^{\prime} B^{\prime}(s)
\end{aligned}
$$

$$
=T+p^{\prime} N(s)+\rho(-k T+\tau \beta)+p_{\sigma}^{\prime \prime} \beta(s)
$$

$$
+\rho^{\prime} \sigma^{\prime} B(s)+\rho^{\prime} \sigma(-\tau N)
$$

$$
=(1-\rho K) T+\left(\rho^{\prime}-\rho^{\prime} \sigma \tau\right) N
$$

Recall

$$
\begin{aligned}
& \rho=\frac{1}{k} \\
& \sigma=\frac{1}{\tau}
\end{aligned}
$$

Enough to show $\frac{\rho}{\sigma}+\rho^{\prime \prime} \sigma+\rho^{\prime} \sigma^{\prime}=0$
we have $\rho^{2}+\left(\rho^{\prime} \sigma\right)^{2}=$ Costant, taking derivative gives

$$
\begin{aligned}
& 2 \rho \rho^{\prime}+2\left(\rho^{\prime} \sigma\right)\left(\rho^{\prime \prime} \sigma+\rho^{\prime} \sigma^{\prime}\right)=0 \\
& 2 \rho^{\prime} \sigma\left(\frac{\rho}{\sigma}+\rho^{\prime \prime} \sigma+\rho^{\prime} \sigma^{\prime}\right)=0 \\
& \sigma \neq 0 \Rightarrow\left(\frac{\rho}{\sigma}+\rho^{\prime \prime} \sigma+\rho^{\prime} \sigma^{\prime}\right)=0 \\
& \rho^{\prime} \neq 0 \Rightarrow
\end{aligned}
$$

Metric on a Surface
A metric on S io a "Smooth assignment" of inner product on each tangent space $T_{p} S$ for $p \in S$:

Eg: \mathbb{R}^{3} naturally admits a metric $T_{p} \mathbb{R}^{3} \simeq \mathbb{R}^{3}$ for each $p \in \mathbb{R}^{3}$ and on This space we have standard inner product.
when $S \subseteq \mathbb{R}^{3}$ embedded, then there in a metric induced on S.

Given $p \in S \Rightarrow P \in \mathbb{R}^{3}$ and

$$
T_{p} S \subseteq T_{p} \mathbb{R}^{3}
$$

how to get $T_{p} S$ usually?
locally around P, S cars be given as a zero-set of some function $\underset{\mathbb{R}^{3}}{u} \longrightarrow \mathbb{R}$ with pe

Now, $T_{p} s$ is simply ken $d f_{p}$.

$$
d f_{p}=J_{a c}(f)=\left(\frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \frac{\partial f}{\partial x}\right)
$$

This inclusion of vector spaces
Cps $\subseteq T_{p} \mathbb{R}^{3}$ induced a inner product on 2 -dim Vector space $T_{p} s$.

If x is a parametrization of S
ie, $x: \mathbb{R}^{2} \rightarrow u \subseteq \underset{\text { open }}{S} \subseteq \mathbb{R}^{3}$

$$
(u, v) \longmapsto \text { open }\left(x^{\prime}(u, v), x^{2}(u, v), x^{3}(u, v)\right)
$$

This is a homeomorphism ie, bijective Gntimeus map with continuous inverse.
"S has a topology induced on it which \hat{b} the subspace topology".
x induces a map $J_{x}: T_{p} R^{2} \rightarrow T_{x(p)} S$
This map is the Jacobian map again, viewing x as a map into \mathbb{R}^{3}

$$
x: \mathbb{R}^{2} \longrightarrow u \subseteq S \longrightarrow \mathbb{R}^{3}
$$

Thus $J_{x}\binom{1}{0}=\left(\frac{\partial x^{\prime}}{\partial u}(u, v), \frac{\partial x^{2}}{\partial u}(u, v), \frac{\partial x^{3}}{\partial u}(u, v)\right)$ and similarly

$$
J_{y}\binom{0}{1}=\left(\frac{\partial x^{1}}{\partial v}(u, v), \frac{\partial x^{2}}{\partial v}(u, v), \frac{\partial x^{3}}{\partial v}(u, v)\right)
$$

The elements $J_{x}\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ \& $J_{n}\binom{11}{1}$ form a basis tangent space at every point in image of the map x.

In this basis the inner product on the tangent spaces(metric) is given by

$$
g=\left(\begin{array}{cc}
\left\langle w_{1}, w_{1}\right\rangle & \left\langle w_{1}, w_{2}\right\rangle \\
\left\langle w_{2}, w_{1}\right\rangle & \left\langle w_{2}, w_{2}\right\rangle
\end{array}\right)
$$

one we have g, the inner product is given by

$$
\left(\begin{array}{ll}
v_{1} & v_{2} \\
\ddot{v}
\end{array}\right)\left(\begin{array}{l}
9
\end{array}\right)\binom{\tilde{v}_{1}}{\tilde{v}_{2}}
$$

where v_{1}, v_{2} are the Components of $v \in T_{P} S$ in the basis $\omega_{1} \& \omega_{2}$.

Problem set 2

1. Stereographic projections:

$$
s^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}
$$

(a)

(b) $\quad x: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a parametrization

$$
x(u, v)=\left(\frac{2 u}{u^{2}+v^{2}+1}, \frac{2 v}{u^{2}+v^{2}+1}, \frac{u^{2}+v^{2}-1}{u^{2}+v^{2}+1}\right)
$$

$t(u, v, 0)+(1-t)(0,0,1)$ line joining $(u, v, 0)$ \& $(0,0,1)$

$$
(t u, t v,(1-t))
$$

find t such that $t^{2} x^{2}+t^{2} v^{2}+(1-t)^{2}=1$

$$
\begin{aligned}
& u^{2}+v^{2}+\left(\frac{1}{t}-1\right)^{2}=\frac{1}{t^{2}} \\
& u^{2}+v^{2}+\frac{1}{t^{2}}-\frac{2}{t}+1=\frac{1}{t^{2}} \\
& u^{2}+v^{2}-\frac{2}{t}+1=0
\end{aligned}
$$

$$
\begin{aligned}
& u^{2}+v^{2}+1=\frac{2}{t} \\
& t=\frac{u^{2}+v^{2}+1}{2}
\end{aligned}
$$

$\Rightarrow\left(\frac{2 u}{u^{2}+v^{2}+1}, \frac{2 v}{u^{2}+v^{2}+1}, \frac{u^{2}+v^{2}-1}{u^{2}+v^{2}+1}\right)$ is the
unique point on s^{2} intersecting this line (obviously other than $(0,0,1)$
(c)

$$
\left.\begin{array}{c}
y: 1 \mathbb{R} \longrightarrow \mathbb{R}^{3} \\
y(\bar{u}, \bar{v})=\left(\frac{2 \bar{u}}{u^{2}+\bar{v}^{2}+1}, \frac{2 \bar{v}}{\overline{u^{2}+\bar{v}^{2}+1},}, \frac{1-\bar{u}^{2}+\bar{v}^{2}}{\bar{u}^{2}+\bar{v}^{2}+1}\right.
\end{array}\right)
$$

what is $\quad x_{0}^{1} \cdot y: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$
for thin we will show $x^{-1}(a, b, c)=\left(\frac{x}{1-z}, \frac{y}{1-z}\right)$
Verity it the x^{-1} !
now compute $x_{0}^{-1} y$ \& show its smooth

$$
x^{-1}, y(x, v)=\left(\frac{x}{x^{2}+v^{2}}, \frac{v}{u^{2}+v^{2}}\right)
$$

(d) Thus by definition of surfaces, $s^{2} h$ a smooth surface.
(e)

$$
\begin{gathered}
x(x, v)=\left(\frac{2 u}{u^{2}+v^{2}+1}, \frac{2 v}{u^{2}+v^{2}+1}, \frac{u^{2}+v^{2}-1}{u^{2}+v^{2}+1}\right) \\
x_{u}(u, v)=\left(\frac{2 v^{2}-2 u^{2}+2}{\left(u^{2}+v^{2}+1\right)^{2}}, \frac{-4 u v}{\left(u^{2}+v^{2}+1\right)^{2}}, \frac{4 u}{\left(u^{2}+v^{2}+1\right)^{2}}\right) \\
x_{v}(u, v)=\left(\frac{-4 u v}{\left(u^{2}+v^{2}+1\right)^{2}}, \frac{2 u^{2}-2 v^{2}+2}{\left(u^{2}+v^{2}+1\right)^{2}}, \frac{4 v}{\left(u^{2}+v^{2}+1\right)^{2}}\right) \\
g_{21}(u, v)=g_{12}(x, v)=0 \\
\left.g_{11}=\frac{4}{\left(u^{2}+v^{2}+1\right)^{2}}\right) \\
g_{22}=\frac{4}{\left(u^{2}+v^{2}+1\right)}{ }^{2} \quad\left(\frac{4}{\left(u^{2}+v^{2}+1\right)^{2}}\right)
\end{gathered}
$$

2. $\quad \alpha(t)=(r(t), z(t)) \quad t \in(a, b) \quad r(t)>0$

Thin is rotated about z-axis, this gives us a surface called rotation surface: S.
now we have a parametrization for S

$$
x(t, \phi)=(r(t) \cos \phi, r(t) \sin \varphi, z(t))
$$

t unres are Called meritiaar.
Q Cures are called Latitudes.
(a) if a in regular ard injection, then n is a parametrization.

Injectivity of a clary gives injectivity of the parametrization $x: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$

$$
\begin{aligned}
& x_{t}(t, \varphi)=(\dot{r}(t) \cos \varphi, \dot{r}(t) \sin \phi, \dot{z}(t)) \\
& x_{\varphi}(t, \varphi)=(-r(t) \sin \varphi, r(t) \cos \varphi, 0) \\
& n(t, \phi)=x_{t}(t, \varphi) \times x_{p}(t, \phi) \\
& =(r(t) \dot{z}(t) \cos \phi,-r(t) \dot{z}(t) \sin \phi, r(t) r(t)) \\
& (n(t, \varphi))^{2}=r^{2}(t)\left(\dot{z}^{2}(t)+r^{2}(t)\right)>0
\end{aligned}
$$

Thin means $x_{t} \& x_{t}$ are never parallel if α is regular
(b) $\quad \alpha(t)=(r(t), z(t))=(2+\cos t, \sin t) \quad t \in(-\pi, \pi)$ what is the rotation surface S :

when this in rotated we get a Torus

(C) metric in rotation Surfaces

$$
\begin{aligned}
& x(t, \phi)=(r(t) \cos \phi, r(t) \sin \phi, z(t)) \\
& x_{1}(t, \phi)=(r(t) \cos \phi, r(t) \sin \phi, z(t)) \\
& x_{\varphi}(t, \phi)=(-r(t) \sin \phi, r(t) \cos \phi, 0) \\
& g_{11}=r(t)^{2}+z(t)^{2} \\
& g_{12}=0 \\
& g_{21}=0 \quad g=\left(\begin{array}{ll}
r(t)^{2}+\hat{z}(t)^{2} & 0 \\
g_{22}=r(t)^{2} & \left.r(t)^{2}\right)
\end{array}\right.
\end{aligned}
$$

3. $x(r, \phi)=(r \cos \phi, r \sin \phi, r)$

$$
\begin{aligned}
& v \in \mathbb{R}^{+} \\
& \phi \in(0,2 \pi)
\end{aligned}
$$

from previous problem we have ' r ' instead of t.

So $\quad g=\left(\begin{array}{ll}2 & 0 \\ 0 & r^{2}\end{array}\right)$
(notice there is
a problem at $\begin{gathered}r=0\end{gathered}$
$r(t)=e^{t \cos \theta} \frac{1}{2}, \phi(t)=\frac{t}{v_{2}} \quad$ thin gives f for a fixed o \& $t \in[0, \pi]$ curve in $(S, 9)$
what is length?

$$
\begin{aligned}
& L(\alpha)=\int_{0}^{T}|\alpha(t)| d t \\
& =\int_{j}^{\pi} \sqrt{g_{i j} \dot{\alpha}^{i} \dot{\alpha}^{j}} d t \\
& =\int_{0}^{\pi} \sqrt{2\left(\alpha^{\prime}\right)^{2}+v^{2}\left(\alpha^{2}\right)^{2}} d t \\
& =\int_{0}^{\pi} \sqrt{2\left(\frac{\cot \theta}{2} \exp \left(\frac{t \cot \theta}{2}\right)\right)^{2}+\exp (t \cot \theta) \cdot \frac{1}{2} d t} \\
& =\sqrt{\frac{\cot ^{2} \theta+1}{2}} \int_{0}^{\pi} \sqrt{\exp (t \cot \theta)} d x \\
& =\left.\frac{1}{\sqrt{2} \sin \theta} \frac{2}{\cot \theta} \exp \frac{+\cot \theta}{2}\right|_{0} ^{\pi} \\
& =\frac{\sqrt{2}}{\sin \theta \cot \theta}\left(\exp \frac{\pi \cot \theta}{2}-1\right)
\end{aligned}
$$

What is the angle a and $q=$ constant curve.
what is $q=$ constant un re
a vector in that direction would be $\omega=(\cos t, \sin t, 1)$ at time $\frac{t}{\sqrt{2}}$

$$
\begin{aligned}
& \operatorname{laim} \frac{\left\langle\alpha^{\prime}, w\right\rangle}{\left(\alpha^{\prime}\right)(\omega)}=\cos 0 \\
& \text { for all } t \& 1 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& e^{t} \frac{\cot \theta}{2} \cot \frac{\theta}{2} \sin \frac{t}{\sqrt{2}}+e^{+t \cot \theta} \frac{1}{2} \cos \frac{t}{\sqrt{2}}, \\
& \left.e^{t \cot \frac{\theta}{2} \cot \frac{\theta}{2}}\right) \\
& \left\langle\alpha^{\prime}, \omega\right\rangle=2 e^{t \frac{\cot \theta}{2}} \cot \frac{\theta}{2} \\
& \left.\sqrt{2\left(\cot \frac{\theta}{2} \exp (t \cot \theta\right.} \frac{2}{2}\right)^{2}+\exp (t \cot \theta) \cdot \frac{1}{2} \sqrt{2} \\
& =\frac{\cot \theta \exp \left(\frac{t \cot \theta}{2}\right)}{\sqrt{\left(\cot ^{2} \theta+1\right) \operatorname{esp}(+\cot \theta)}} \\
& =\sin \theta \cot \theta=\cos \theta \text {. }
\end{aligned}
$$

(4) Transformation law for tangent vators and the metric Getficients.

The Jacobian matrix of f tells how the basis changes.

$$
F=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y}
\end{array}\right]
$$

If the basin chare in given by this matrix how does the g change.

$$
\sum_{i, j} g_{i j}^{v} \alpha_{i}^{v} \beta_{j}^{v}=\sum_{i, j} g_{i j}^{v}\left(F \alpha^{u}\right)_{i}\left(F \beta^{u}\right)_{j}
$$

$$
\begin{aligned}
& =\left[F \alpha^{n}\right]^{\top}[9]^{v}\left[F \beta^{n}\right] \\
& =\alpha^{n} F^{\top} G^{v} F \beta^{n}
\end{aligned}
$$

Thus G^{v} changes as $F^{\top} G^{v} F$

$$
G^{u}=F^{\top} G^{v} F
$$

$\& \quad \alpha^{v}=F \alpha^{u}$

